Eulersche Gerade

Euler-Gerade e (schwarz),
Höhenschnittpunkt H (rot),
Schwerpunkt S (grün, Schnittpunkt der Seitenhalbierenden),
Umkreismittelpunkt U (blau, Schnittpunkt der Mittelsenkrechten),
Feuerbachkreis mit Mittelpunkt N (schwarz)

Die eulersche Gerade oder Euler-Gerade ist eine spezielle Gerade eines nicht-gleichseitigen Dreiecks. Auf ihr liegen eine Reihe von ausgezeichneten Dreieckspunkten, darunter der Schwerpunkt, der Umkreismittelpunkt, der Höhenschnittpunkt und der Mittelpunkt des Feuerbachkreises. Benannt ist sie nach dem Mathematiker Leonhard Euler. Für das allgemeine Tetraeder im dreidimensionalen Raum gibt es den analogen Begriff (s. u.).

Eigenschaften

In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden. Da der Mittelpunkt des Feuerbachkreises N zugleich der Mittelpunkt der Strecke HU ist (Satz von Feuerbach), liegt dieser ebenfalls auf der Eulergeraden. Darüber hinaus gelten für diese vier Punkte die folgenden Streckenverhältnisse |HU|=3|US|=6|NS|, |HS|=4|NS|, |HN|=3|NS|, |NU|=3|NS| und |SU|=2|NS|.

Euler-Gleichung und Feuerbach-Gleichung

Für die Koordinaten der vier Punkte S, H, U und N gelten die folgenden Gleichungen:

  • (Euler-Gleichung)
  • (Feuerbach-Gleichung)

In einem gleichschenkligen Dreieck stimmt die eulersche Gerade mit der zur Basis gehörigen Seitenhalbierenden (Mittelsenkrechten, Höhe, Winkelhalbierenden) überein. Im Falle eines gleichseitigen Dreiecks kann man nicht mehr von der eulerschen Geraden sprechen, weil dann die drei bestimmenden Punkte S, U und H zu einem Punkt zusammenfallen. (Sonst könnte ja jede Gerade durch diesen einen Punkt als eulersche Gerade aufgefasst werden, was man aber der Eindeutigkeit halber vermeidet.)

Auf der eulerschen Geraden des Dreiecks ABC liegt auch der Umkreismittelpunkt des Dreiecks, das von den Tangenten an den Umkreis des Dreiecks ABC in den Punkten A, B und C gebildet wird. Darüber hinaus enthält die eulersche Gerade noch weitere ausgezeichnete Punkte des Dreiecks, unter anderem den Longchamps-Punkt, den Schiffler-Punkt und den Exeter-Punkt.

Der Mittelpunkt des Inkreises des Dreiecks liegt auf der eulerschen Gerade genau dann, wenn das Dreieck gleichschenklig ist.[1]

Tetraeder

Euler-Gerade in schwarz

Für ein allgemeines Tetraeder nennt man (in Analogie zum zweidimensionalen Fall des Dreiecks) die eulersche Gerade oder Euler-Gerade von diejenige Gerade , welche den Schwerpunkt von und den Mittelpunkt der Umkugel von verbindet.[2]

Siehe auch

Literatur

Weblinks

Einzelnachweise

  1. Allan L. Edmonds, Mowaffaq Hajja, Horst Martini: Orthocentric Simplices and Biregularity. In: Results in Mathematics. Band 52, Nr. 1-2, August 2008, ISSN 1422-6383, S. 41–50, doi:10.1007/s00025-008-0294-4 (springer.com [abgerufen am 29. August 2019]).
  2. Altshiller-Court, S. 77